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3 Using the ABAP Workbench

This chapter introduces the ABAP Workbench and explains the rela-
tionship between the ABAP Workbench and the development tools. 
We will take a closer look at the ABAP Editor, one of the most widely 
used tools in the ABAP Workbench. We will also look at how to cus-
tomize some of the Workbench features. 

You can start a report without using the ABAP Editor – if you know how to 
define a transaction code. Let’s briefly cover how to define a transaction 
code.

3.1 Starting the ABAP Workbench
There are two ways to open the ABAP Workbench (also known as the Ob-
ject Navigator).

One option is to start the ABAP Workbench directly with transaction code 
SE80. Select the object you want to work on (for example, your report) and 
then the Workbench will launch the appropriate tool (for reports, the ABAP 
Editor opens).

It works the other way as well: when you are working on your report using 
the ABAP Editor, open the ABAP Workbench using the menu path Utilities • 
Display Object List. This will open a separate area on the left-hand side – 
as displayed in Figure 3.1 – which is called the object list.

The object list for a report shows the data objects used in the report. 

You can open the object list not only in the ABAP Editor, but also from each 
ABAP tool. The object list is a separate window section with its own navi-
gation; it is not always synchronized with the object displayed on the right-
hand side. You can always synchronize both sections in one direction or the 
other: either use the menu path listed above to show the object list for an 
object displayed in the tool (right-hand side); alternatively, select an object 
in the object list (left-hand side) by double-clicking it and the appropriate 
tool will be displayed on the right-hand side of the screen. Later, we will see 
that it can be useful not to have both sections synchronized.
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Figure 3.1: The object list for a report

Above the object list, three buttons with icons and text are visible: MIME Re-
pository, Repository Browser (highlighted), and Repository Infosystem. 
The Repository Browser is currently selected and below that, a dropdown 
box shows Program and the name of our report. Our report is part of the 
ABAP Repository, like many other ABAP object types (for example, ABAP 
classes) as well.

 4 The ABAP Repository

All ABAP Repository objects are stored in the database. When we save 
any changes for our report, the changes are written to the database, into 
the repository area in the database.

Business data in the database is client-specific data, since a client is a 
unit that is self-contained in terms of business, organization, and data. 
However, repository objects are client-independent: a report created in 
one client can be used in the other clients of that system as well. More 
than likely, the business results of the report are different when started 
in different clients, since the report will be working on different business 
data (which is client-specific data).
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You can change user-specific settings to determine which tools are dis-
played in the ABAP Workbench, as described in the following section. 

3.2 Configuring ABAP Workbench options

The ABAP Workbench can display more tools than you will need in your 
daily work, so it is a good idea to display only the tools you need.

Select Utilities • Settings to change your user-specific settings. The first 
tab Workbench (General) allows you to set the Browser Selection of 
your choice. Use this tab to select only the Repository Browser and the 
Repository Information System, as shown in Figure 3.2 below.

Figure 3.2: ABAP Workbench Settings

As you can see on the third tab, there is an area for user-specific settings 
for the ABAP Editor as well. Select that tab to see the Pretty Printer tab 
and use the Convert Uppercase/Lowercase option to select Keyword Up-
percase, as shown in Figure 3.3.

After closing the popup window, use the Pretty Printer button to auto-
matically convert ABAP keywords to upper case (and to properly indent the 
lines, if you selected that option). These options optimize the display of 
your report according to your preferences, they are not relevant for the run-
time of your report.
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Figure 3.3: ABAP Editor settings for Pretty Printer

Now back to the selection Program in the Repository Browser: let’s take a 
look at the dropdown menu options.

3.3 Working with packages and transport requests

When you open the dropdown menu, you will see some of the existing re-
pository object types, like Program and Package as displayed in Figure 3.4.

Figure 3.4: Repository object types in the Repository Browser 
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When we created our first report in Chapter 1, we skipped over an explana-
tion of packages (Figure 1.3). Let’s now examine packages in ABAP. Each 
object is assigned to a package, along with other objects that pertain to the 
same area of development or business functionality. A package bundles dif-
ferent types of objects, like reports, UI objects, and ABAP classes, as long 
as they belong together from the application view. Several developers may 
work on the objects in one package.

Each ABAP object has another assignment that we previously skipped over: 
transport requests. A transport request bundles objects that will be trans-
ported together along the transport path.

 4 ABAP transports

ABAP objects are developed in a development system. When a devel-
opment phase is done, the objects are transported to the next system 
(typically a quality assurance or test system). The third step in a typical 
transport landscape is a production system, in which no development is 
allowed. 

All three systems are separate installations of AS ABAP, with their own 
system ID.

A transport request may include objects from different packages, and vice 
versa. Generally, as a developer, you do not have to worry about transports. 
As soon as you are done with the current development cycle, you will have 
to change all of your objects to status Final (which is called Release your 
transport request). Typically, the project lead on your team will determine 
when to transport the objects. The transport is technically carried out by AS 
ABAP (and its tools).

To create a package, select the menu entry Package in the Repository Browser, 
and enter the name of your package, for example,  ZFIRSTPACKAGE. Press 
(Enter): the ABAP Workbench will then display a popup, asking whether you 
would like to create the (not yet existing) package. Confirm with Yes. 

Add a short description of the package, as displayed in Figure 3.5.
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