

5

Table of Contents

Table of Contents

Preface 7

1 Getting Started with ABAP 9
1.1 Hello ABAP 9
1.2 Creating a program with the ABAP Editor 10
1.3 Starting the report 14
1.4 Getting help from ABAP keyword documentation 16
1.5 Viewing existing code 17
1.6 Versioning your report 18
1.7 Conclusion 18

2 Using ABAP Statements 19
2.1 Using parameters as input variables 19
2.2 Using conditional branches 22
2.3 Using texts that can be translated 23
2.4 Working with string variables 24
2.5 Using elementary data types 25
2.6 Debugging your report 27
2.7 Conclusion 30

3 Using the ABAP Workbench 31
3.1 Starting the ABAP Workbench 31
3.2 Configuring ABAP Workbench options 33
3.3 Working with packages and transport requests 34
3.4 Transaction code for a report 37

4 Using data types from the ABAP Data Dictionary (DDIC) 41
4.1 Getting started with complex data types 41
4.2 Working with the ABAP Data Dictionary (DDIC) 44
4.3 Understanding internal tables 48

5 Modularization and reusing functionality 53
5.1 Using form routines 53
5.2 Using function modules 56

6

Table of Contents

5.3 Using ABAP classes 71
5.4 Exception concept for classes 80

6 Accessing the database 83
6.1 Using ABAP statements to access the database 83

7 ABAP user interface technologies 91
7.1 Working with messages 91
7.2 Working with list processing 92
7.3 Working with screens and dynpros 101
7.4 Short overview of SAP UI technologies 115

8 Introducing the ABAP Development Tools 121
8.1 Installing ADT 122
8.2 Choosing the ABAP perspective 123
8.3 Creating an ABAP Project 123
8.4 Using the Project Explorer 125
8.5 Creating new objects 127

9 Conclusion 129

A The Author 131

B Index 132

C Disclaimer 136

31

3 Using the ABAP Workbench

This chapter introduces the ABAP Workbench and explains the rela-
tionship between the ABAP Workbench and the development tools.
We will take a closer look at the ABAP Editor, one of the most widely
used tools in the ABAP Workbench. We will also look at how to cus-
tomize some of the Workbench features.

You can start a report without using the ABAP Editor – if you know how to
define a transaction code. Let’s briefly cover how to define a transaction
code.

3.1 Starting the ABAP Workbench
There are two ways to open the ABAP Workbench (also known as the Ob-
ject Navigator).

One option is to start the ABAP Workbench directly with transaction code
SE80. Select the object you want to work on (for example, your report) and
then the Workbench will launch the appropriate tool (for reports, the ABAP
Editor opens).

It works the other way as well: when you are working on your report using
the ABAP Editor, open the ABAP Workbench using the menu path Utilities •
Display Object List. This will open a separate area on the left-hand side –
as displayed in Figure 3.1 – which is called the object list.

The object list for a report shows the data objects used in the report.

You can open the object list not only in the ABAP Editor, but also from each
ABAP tool. The object list is a separate window section with its own navi-
gation; it is not always synchronized with the object displayed on the right-
hand side. You can always synchronize both sections in one direction or the
other: either use the menu path listed above to show the object list for an
object displayed in the tool (right-hand side); alternatively, select an object
in the object list (left-hand side) by double-clicking it and the appropriate
tool will be displayed on the right-hand side of the screen. Later, we will see
that it can be useful not to have both sections synchronized.

32

Using the ABAP Workbench

Figure 3.1: The object list for a report

Above the object list, three buttons with icons and text are visible: MIME Re-
pository, Repository Browser (highlighted), and Repository Infosystem.
The Repository Browser is currently selected and below that, a dropdown
box shows Program and the name of our report. Our report is part of the
ABAP Repository, like many other ABAP object types (for example, ABAP
classes) as well.

 4 The ABAP Repository

All ABAP Repository objects are stored in the database. When we save
any changes for our report, the changes are written to the database, into
the repository area in the database.

Business data in the database is client-specific data, since a client is a
unit that is self-contained in terms of business, organization, and data.
However, repository objects are client-independent: a report created in
one client can be used in the other clients of that system as well. More
than likely, the business results of the report are different when started
in different clients, since the report will be working on different business
data (which is client-specific data).

33

Using the ABAP Workbench

You can change user-specific settings to determine which tools are dis-
played in the ABAP Workbench, as described in the following section.

3.2 Configuring ABAP Workbench options

The ABAP Workbench can display more tools than you will need in your
daily work, so it is a good idea to display only the tools you need.

Select Utilities • Settings to change your user-specific settings. The first
tab Workbench (General) allows you to set the Browser Selection of
your choice. Use this tab to select only the Repository Browser and the
Repository Information System, as shown in Figure 3.2 below.

Figure 3.2: ABAP Workbench Settings

As you can see on the third tab, there is an area for user-specific settings
for the ABAP Editor as well. Select that tab to see the Pretty Printer tab
and use the Convert Uppercase/Lowercase option to select Keyword Up-
percase, as shown in Figure 3.3.

After closing the popup window, use the Pretty Printer button to auto-
matically convert ABAP keywords to upper case (and to properly indent the
lines, if you selected that option). These options optimize the display of
your report according to your preferences, they are not relevant for the run-
time of your report.

34

Using the ABAP Workbench

Figure 3.3: ABAP Editor settings for Pretty Printer

Now back to the selection Program in the Repository Browser: let’s take a
look at the dropdown menu options.

3.3 Working with packages and transport requests

When you open the dropdown menu, you will see some of the existing re-
pository object types, like Program and Package as displayed in Figure 3.4.

Figure 3.4: Repository object types in the Repository Browser

35

Using the ABAP Workbench

When we created our first report in Chapter 1, we skipped over an explana-
tion of packages (Figure 1.3). Let’s now examine packages in ABAP. Each
object is assigned to a package, along with other objects that pertain to the
same area of development or business functionality. A package bundles dif-
ferent types of objects, like reports, UI objects, and ABAP classes, as long
as they belong together from the application view. Several developers may
work on the objects in one package.

Each ABAP object has another assignment that we previously skipped over:
transport requests. A transport request bundles objects that will be trans-
ported together along the transport path.

 4 ABAP transports

ABAP objects are developed in a development system. When a devel-
opment phase is done, the objects are transported to the next system
(typically a quality assurance or test system). The third step in a typical
transport landscape is a production system, in which no development is
allowed.

All three systems are separate installations of AS ABAP, with their own
system ID.

A transport request may include objects from different packages, and vice
versa. Generally, as a developer, you do not have to worry about transports.
As soon as you are done with the current development cycle, you will have
to change all of your objects to status Final (which is called Release your
transport request). Typically, the project lead on your team will determine
when to transport the objects. The transport is technically carried out by AS
ABAP (and its tools).

To create a package, select the menu entry Package in the Repository Browser,
and enter the name of your package, for example, ZFIRSTPACKAGE. Press
(Enter): the ABAP Workbench will then display a popup, asking whether you
would like to create the (not yet existing) package. Confirm with Yes.

Add a short description of the package, as displayed in Figure 3.5.

Index

132

B Index

A
ABAP class 71
ABAP Class Builder 72
ABAP comments 12
ABAP Data Dictionary (DDIC) 44

Customer namespace 48
ABAP Development Tools (ADT)

121
ABAP Editor 10
ABAP keyword 9
ABAP keyword documentation 16
ABAP List Viewer (ALV) 96
ABAP objects 71

Constructor method 79
Encapsulation 72

ABAP Repository 32
ABAP SQL 83
ABAP statement 9
ABAP transports 35
ABAP Workbench 31
ABAP Workbench options 33
access to structure field 42
architecture of AS ABAP 9, 49
assignment operator 22
AUTHORITY CHECK 90

B
BAPI 58, 65

Exceptions 66
BAPI_FLIGHT_GETLIST 66
breakpoint 27
breakpoint types 28
BSP page 117
business object 65
Business Server Page (BSP) 117

C
CALL FUNCTION 63
calling class methods 77
CALL METHOD 77
CALL SCREEN 102
CASE 26
chain statements 20
class exceptions 80
client 32
CLIENT SPECIFIC 86
COLOR 96
COMMIT WORK 57
conditional branch 22
CONSTRUCTOR 79
conversion routines 26
CREATE OBJECT 79
customer namespace for module

pools 110

D
DATA 24, 43
database table 44
Data Browser 48
data element 45
data objects 24
data object types 24
data type

C 24
Complex 41
D 26
Decfloat 25
In DDIC 45
Local definition 42

debugging 27
Start (/h) 28

demo application 47
DESCRIBE 98

Index

133

developer key
 12
dialog transaction 101
domain 45, 48
drag and drop 78
dynpro 101

Element list 104
Flow logic 103
Menu Painter 109
Menus and buttons 109

dynpro program 101

E
elementary data types 25
Enhancement Framework 18
ERM 48
event 29, 93

AT LINE-SELECTION 93
AT SELECTION SCREEN 93
INITIALIZATION 93
START-OF-SELECTION 93

exception classes 80
exception concept for classes 80
exception object 81

F
flight data model 47, 68
Floorplan Manager (FPM) 119
FORM 53
FORMAT 96
form routine 53

Call 55
Definition 53

forward navigation 18, 61, 102
Function Builder 56, 59
function group 56, 59
function module 56

Call 63
Exception 62
Testing 62

G
global structure definition 44, 47
Graphical Screen Painter 104
GROUP 95

H
HOTSPOT 95
HTMLB 117

I
ICON_LIST 96
INCLUDE 100
input variables 19
instance method 72
Intellisense 13
internal table 49

ABAP statements 51
Work area 49

Internet Transaction Server (ITS)
116

itab 49

L
list 93

Basic list 93
Detail lists 93
List buffer 93

list buffer 16
list formatting 95
list of inactive objects 21
list processing 92
local classes 72
local objects 37
Logical Unit of Work (LUW) 90
LOOP AT 50

M
MESSAGE 91
messages 91

Message class 92

Index

134

Message type 91
method parameter types 74
modularization 53
module pool 101, 102, 110
MOVE-CORRESPONDING 42

N
naming convention 25
Native SQL 83, 84
nested structures 41
next screen 103

O
object list 31
Object Navigator 31
object orientation 71

Instance of a class 71
object selection 37
OK_CODE 113
Open SQL 83, 84

P
package 34, 35

$TMP 37
PARAMETERS 19

Lower-case 20
pattern function 63, 78
performance for database access

89
Pretty Printer 33
private method 72
PROCESS AFTER INPUT (PAI) 104
PROCESS BEFORE OUTPUT (PBO)

104
production system 35
public method 72

R
RADIOBUTTON 94
RAISE EXCEPTION 81

relational database management
system (RDBMS) 83

remote-enabled function module
58

remote-enabled module 60
reports 9
report transaction 39
Repository Browser 32
RETURN parameter 66
RFC 60
RFM 60, 65, 72
runtime object 46

S
SAP Business Technology Platform

(BTP) ABAP environment 14
SAP Fiori 119
SAPGUI for Windows 39
SAP NetWeaver Application Server

ABAP 9
SAPUI5 119
Screen Painter 103
screen processing 101
SELECT 84
selection screen 21, 39, 94
selection text 20
sflight 87
SFLIGHT 47
SKIP TO LINE 95
static method 72
string variable 24
subroutine 53
sy-lilli 94
sy-listi 94
sy-lsind 94
SY-SUBRC 46

T
Table Control Wizard 109, 111
table keys 51
TABLE statement 115

Index

135

testing class methods 76
test system 35
text pool 23, 24
text symbols 23
TOP include 109, 110
transaction code 37
translatable text 23
transparent table 47, 48
transport request 34, 35
try/catch 81
TYPES 42
TYPE TABLE OF 49

U
user interfaces 91

V
VALUE 25
versioning 18

W
Web Client UI framework 118
Web Dynpro ABAP 118
work area 50
work process 83

	_GoBack
	_Ref109028616
	_Ref109028635
	_Ref109028683
	_Ref109028684
	_Ref119850477
	_Ref109028685
	_Ref109028686
	_Ref109028743
	_Ref109028755
	_Ref109028776
	_Ref109028803
	_Ref109028812
	_Ref109028823
	_Ref119850573
	_Ref119850694
	_Ref109028842
	_Ref109028850
	_Ref109028874
	_Ref119855195
	_Ref119855208
	_Ref119948484
	_Ref109028880
	_Ref109028888
	_Ref125898876
	_Ref109028896
	_Ref109028913
	_Ref109028920
	_Ref109028958
	_Ref109028971
	_Ref109028977
	_Ref119948562
	_Ref119850664
	_Ref119855558
	_Ref109028993
	_Ref109029000
	_Ref109029028
	_Ref119850818
	_Ref119850900
	_Ref119850955
	_Ref119853049
	_Ref119853147
	_Ref119853219
	_Ref109029069
	_Ref109029077
	_Ref109029084
	_Ref109029091
	_Ref109029103
	_Ref109029110
	_Ref109029117
	_Ref109029123
	_Ref119853283
	_Hlk100495432
	_Ref119853330
	_Ref119948913
	_Ref109029137
	_Ref109029167
	_Ref109029176
	_Ref109029182
	_Ref109029190
	_Ref109029198
	_Ref119853430
	_Ref109029204
	_Ref109029217
	_Ref109029413
	_Ref119853542
	_Ref109029225
	_Ref119853615
	_Ref109029233
	_Ref119853664
	_Ref119853738
	_Ref119853732
	_Ref119948807
	_Ref109029444
	_Ref109029452
	_Ref109029459
	_Ref119853987
	_Ref119853994
	_Ref109029466
	_Ref109029474
	_Ref119854140
	_Ref119854157
	_Ref109029481
	_Ref119854213
	_Ref119854259
	_Ref119854320
	_Ref119854375
	_Ref119854393
	_Ref119854427
	_Ref119948522
	_Ref119949921
	_Ref109029488
	_Ref109029496
	_Ref109029511
	_Ref109029518
	_Ref109029531
	_Ref119854498
	_Ref109029538
	_Ref109029545
	_Ref124243479
	_Ref109029552
	_Ref109029568
	_Ref109029576
	_Ref119854563
	_Ref119854643
	_Ref119854655
	_Ref119854688
	_Ref98672194
	_Ref119854954
	_Ref119854876
	_Ref119854909
	Preface
	1	Getting Started with ABAP
	1.1	Hello ABAP
	1.2	Creating a program with the ABAP Editor
	1.3	Starting the report
	1.4	Getting help from ABAP keyword documentation
	1.5	Viewing existing code
	1.6	Versioning your report
	1.7	Conclusion

	2	Using ABAP Statements
	2.1	Using parameters as input variables
	2.2	Using conditional branches
	2.3	Using texts that can be translated
	2.4	Working with string variables
	2.5	Using elementary data types
	2.6	Debugging your report
	2.7	Conclusion

	3	Using the ABAP Workbench
	3.1	Starting the ABAP Workbench
	3.2	Configuring ABAP Workbench options
	3.3	Working with packages and transport requests
	3.4	Transaction code for a report

	4	Using data types from the ABAP Data Dictionary (DDIC)
	4.1	Getting started with complex data types
	4.2	Working with the ABAP Data Dictionary (DDIC)
	4.3	Understanding internal tables

	5	Modularization and reusing functionality
	5.1	Using form routines
	5.2	Using function modules
	5.3	Using ABAP classes
	5.4	Exception concept for classes

	6	Accessing the database
	6.1	Using ABAP statements to access the database

	7	ABAP user interface technologies
	7.1	Working with messages
	7.2	Working with list processing
	7.3	Working with screens and dynpros
	7.4	Short overview of SAP UI technologies

	8	Introducing the ABAP Development Tools
	8.1	Installing ADT
	8.2	Choosing the ABAP perspective
	8.3	Creating an ABAP Project
	8.4	Using the Project Explorer
	8.5	Creating new objects

	9	Conclusion
	A	The Author
	B	Index
	C	Disclaimer

